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Numerical simulation of turbulent flow
in a pipe oscillating around its axis
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The turbulent flow in a cylindrical pipe oscillating around its longitudinal axis is
studied via direct numerical solution of the Navier–Stokes equations, and compared
to the reference turbulent flow in a fixed pipe and in a pipe with steady rotation. The
maximum amount of drag reduction achievable with appropriate oscillations of the
pipe wall is found to be of the order of 40%, hence comparable to that of similar
flows in planar geometry. The transverse shear layer due to the oscillations induces
substantial modifications to the turbulence statistics in the near-wall region, indicating
a strong effect on the vortical structures. These modifications are illustrated, together
with the implications for the drag-reducing mechanism. A conceptual model of the
interaction between the moving wall and a streamwise vortex is discussed.

1. Introduction
Friction drag in turbulent wall flows is several times higher than in laminar flows.

This is one of the main motivations for studies on turbulence management. Many
of them are aimed at reducing the friction drag while allowing the flow to remain
turbulent, both by using an external energy source (i.e. active techniques) or by relying
on effects, like the modification of the shape of the wall (passive techniques), which do
not require any external energy to be put into the system. The industrial importance
and potential of such studies is enormous.

A recently discovered method for achieving a sustained turbulent drag reduction in
boundary layers and channel flows is a cyclic movement of the wall, of appropriate
amplitude and frequency, in the spanwise direction. This clearly represents an active
technique, since energy is needed for the motion of the wall, but it offers the remarkable
advantage of being rather simple from a conceptual point of view, since no feedback
is required in the control law. The use of this technique was first suggested by Jung,
Mangiavacchi & Akhavan (1992), who have been able to show, via a direct numerical
simulation (DNS), that reductions of friction drag of the order of 40% are possible,
by carefully selecting the parameters of the oscillation. These results have been further
confirmed by the subsequent DNS of Baron & Quadrio (1996). They contributed the
additional information that not only is a significant drag reduction possible, but
also the overall energetic balance, computed by taking into account the power spent
for the movement of the wall, can be positive. On the experimental side, studies by
Laadhari, Skandaji & Morel (1994), Skandaji (1997), Choi et al. (1997), and Trujillo,
Bogard & Ball (1997), have confirmed and extended the DNS results. More recently,
Dhanak & Si (1999) have also proposed a conceptual model for explaining the effect
of the lateral oscillations on the turbulent friction.
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To date, most of the studies, both experimental and numerical, conducted on
the subject of spanwise wall oscillations, have focused on plane channel flows and
boundary layers, owing to the combined generality and simplicity of such geometries.
Only recently, has an experimental study by Choi & Graham (1998) addressed
the case of turbulent flow in a cylindrical pipe subject to oscillations around its
longitudinal axis. According to the authors, this setup holds ‘great promise for
industrial applications, for example, in the transport of oil, gas, water and foodstuffs
through pipes’. We are unaware of similar research conducted numerically via DNS;
however, a numerical simulation of the turbulent flow in a pipe has been provided
by Eggels et al. (1994), to whom we will refer to as EUW in the following. Orlandi
& Fatica (1997, hereinafter referred to as OF) performed similar computations, and,
in addition, were able to investigate the effect of a steady rotation of the pipe about
its longitudinal axis, exploring a wide range of rotation numbers, and finding that in
the presence of steady rotation the flow experiences a decrease of the friction factor.

The case with alternating rotation, the subject of the present study, is different from
the case with steady rotation. As will be seen in the following, not only can the amount
of drag reduction be significantly higher, but, more important, the overall structure
of the flow looks completely different in the wall region, and hence the modification
induced by the rotation on the turbulent structures also shows significant differences.

Besides the practical interest for drag reduction, the oscillating flow studied in the
present work is interesting per se, since it represents a flow where the wall vorticity
induced by the movement of the wall is aligned with the streamwise vortices. Their role
and importance in the turbulence-production cycle is recognized by many authors,
see for example Robinson (1991). This is the case also for the steady rotating pipe
investigated by OF, but in their study the induced mean vorticity greatly influences
the flow, while here the time-averaged value of the vorticity related to the rotation
of the wall is zero. It can be therefore interesting to look at the direct effects of a
zero-mean streamwise vorticity distribution imposed on a turbulent pipe flow.

The structure of the paper is as follows. The physical problem, the numerical
techniques and the computational parameters are described in § 2. In § 3 results are
presented for the preliminary parametric study focused on drag reduction, while
turbulence statistics obtained with finer mesh computations are illustrated in § 4.
A tentative explanation of the interaction between the moving wall and near-wall
turbulence structures is discussed in § 5.

2. Physical problem and numerical techniques
Three turbulent flows have been simulated: one in a fixed pipe, one in a steadily

rotating pipe and the last in the oscillating pipe.
The equations of motion have been made non-dimensional with the centreline

streamwise velocity UP of the laminar Poiseuille flow which possesses the same
bulk mean velocity Ub as the actual flow, and by the radius R of the pipe. The
Reynolds number has consequently been defined as Re = UPR/ν, and it has been
set to Re = 4900 for the reference flow. In the steady rotating pipe flow, the rotation
number is N = 2ΩR/UP , where Ω is the angular velocity of the pipe; in the oscillating
pipe flow, N is defined as N = 2vθ0/UP , where vθ0 is the maximum amplitude of the
oscillation of the pipe wall. The azimuthal component of the wall velocity is therefore
given by vθ = vθ0 sin

(
2πt/Tw

)
; here Tw is the period of the sinusoidal oscillation.

Computations have been carried out by keeping the bulk mean velocity fixed (which
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Figure 1. Sketch of the computational domain.

is 0.5 with the present non-dimensionalization), and hence the mean pressure gradient
varies with time.

A parametric study has been performed, to determine the best parameters in terms
of drag reduction. Three oscillation periods have been tested: T+

w = 50, 100 and
150. The plus superscript indicates (here and in the following) quantities in wall
units, i.e. made non-dimensional with the kinematic viscosity and the friction velocity
uτ =

√
τw/ρ, where τw is the computed wall friction and ρ is the fluid density. For each

period five rotation numbers have been used, from N = 0 to N = 1 in steps of 0.2.
The computer code used for the present research was developed by Verzicco

& Orlandi (1996), and a detailed description is given in their paper, where two-
dimensional, axisymmetric and three-dimensional flows are computed for the purpose
of validation. The code is a solver for the Navier–Stokes equations written in primitive
variables and in cylindrical coordinates. Figure 1 is a sketch of the computational
domain, where z indicates the axial direction, θ is the azimuthal angle and r the
radial coordinate. The variables actually used in the code are qθ = rvθ , qr = rvr and
qz = vz , since this choice reduces the problems associated with the singularity at r = 0
and allows better accuracy to be achieved in the axis region. The code is based on
second-order finite-difference schemes for the spatial discretization of viscous and
advective terms, and uses a fractional step method, based on the third-order low-
storage Runge–Kutta method, for advancing the solution in time. Given that viscous
terms are treated implicitly by the Crank–Nicholson scheme, the overall accuracy of
the code is second order both in time and space. The code has been used for the
simulation of the turbulent flow in a steady rotating pipe by OF. They employed
a fixed reference frame, taking into account the steady rotation of the pipe via the
presence of the Coriolis body force in the equations of motion.

In the present work, the code has been modified in order to account for the
particular boundary conditions. Periodic conditions have been imposed in the longi-
tudinal direction (the relevant effect of the domain length L/R on the results will be
discussed in the following). In order to cope with the alternating movement of the
cylindrical wall, we have decided to use an inertial laboratory reference frame, instead
of translating the movement of the wall into a time-dependent body force. In this
way the sinusoidal oscillation of the wall requires the application of the appropriate
instantaneous velocity value as the boundary condition for the azimuthal component
of the velocity at the wall.

The DNS of turbulent flows in pipes oscillating sinusoidally around the longitudinal
axis is computationally expensive. There are two main factors affecting its cost. First,
the time integration interval must be larger than that required for the simulation
of the flow in a steady rotating pipe, due to the time required for the alternating
oscillations to be felt from the wall through the whole pipe and to give rise to a
statistically steady state. Second, the longitudinal extent of the computational domain
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must be larger, in order to account for the elongation of the near-wall turbulent
structures induced by the oscillation. We have used a pipe length of L = 20R, which
has been proved to be the minimum for the assumption of periodicity in the axial
direction to be valid. For the fixed pipe flow, a length of L = 10R has been used
by EUW, even though it does not allow all correlations to decrease to zero. In their
study OF, after checking both L = 15R and L = 20R, decided to use L = 15R for the
simulations of the rotating case. In the present case, L = 20R is necessary, given the
intense drag reduction and the consequent elongation of the structures in the axial
direction. Examination a posteriori of the autocorrelation functions computed at some
distances from the wall (see e.g. figure 12c) confirms the adequacy of this choice.

The results presented here have been computed using two mesh sizes. The coarser
mesh has 97 × 39 × 97 points, in the azimuthal, radial and longitudinal directions
respectively, and is used in the preliminary study to determine the parameters of the
oscillations leading to the best performance in terms of reduction of turbulent skin
friction. The finer mesh has 129× 97× 257 grid points; the corresponding resolutions
are λ+ = (r∆θ)+ 6 8.28, ∆r+ = 0.57–3, and ∆z+ = 13.3. This mesh is used to compute
the turbulence statistics described in § 4. The distribution of the mesh points in the
radial direction follows a hyperbolic tangent, in order to enhance resolution in the
wall region, where the turbulent length scales are smaller, while keeping reasonably
low the number of grid points in the radial direction. The stretching is however kept
very small, with the aim of avoiding the introduction of numerical inaccuracies. As
will be illustrated later, a posteriori examination of power spectral density functions
confirms that the spatial resolution of the most resolved simulation is adequate to
represent the relevant turbulent scales in the flow. These resolutions are comparable
to those used by Kim, Moin & Moser (1987) in their well-known work on plane
channel flows, and by many other investigators in different DNS of similar flows at
equivalent Reynolds numbers. One possible exception is ∆r+, which is in the range
of the best-resolved finite-difference computations (e.g. those by OF), but might be
smaller near the wall when different discretizations are used.

First a simulation for the steady pipe flow has been conducted. After reaching the
statistically steady state, a single flow field has been chosen as the starting point for
the other simulations with the oscillating pipe. These computations have been carried
out for 600 non-dimensional time units (i.e. 600 tUP/R), but the calculation of the
mean friction was started after 200 time units, to let the initial transient completely
disappear. Approximately 50 000 time steps are needed for the integration of the
most demanding computational case. Nineteen and twenty-three flow fields have been
stored for further analysis in the fixed and steadily rotating case respectively. For
the oscillating pipe, to study the dependence of the statistics on the phase of the
oscillation cycle, nineteen cycles (after the initial transient stage) have been analysed,
by storing eight flow fields for each cycle, amounting to a total of 152 flow fields.

3. Parametric study of the drag-reduction effect
Several computations on a relatively coarse mesh have been performed to assess

the turbulent drag-reduction properties of the oscillating pipe, and to compare its
performance with that in the plane geometry (boundary layer or channel flow). The
results of this parametric study are shown in figure 2, where the percentage drag
reductions are reported vs. the maximum wall velocity. A rotation number of N = 1
corresponds to v+

θ0 ' 14, made non-dimensional in wall units by using the friction
velocity computed for N = 0. It has been verified that these results (in terms of
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Figure 2. Reduction in friction drag for turbulent flow in the oscillating pipe, as a function of
the non-dimensional wall velocity v+

θ0, for different periods of oscillation. Comparison with data
measured for plane channel flows at T+

w = 100 and with experiments for pipe flow at Re = 23 300
(labelled with corresponding T+

w ). The open circle shows the result from the fine-mesh computation,
at N = 0.5 and T+

w = 100.

friction reduction) are not affected by the spatial resolution. The time history of
the friction does indeed depend on the resolution, but it has been found that its
mean value does not. The data point, shown in figure 2 with an open circle and
corresponding to N = 0.5 and T+

w = 100, has been computed with the fine mesh, and
supports the claim of independence of the results from the mesh size, as far as the
percentage drag reduction is concerned. Indeed, it falls on the line interpolating the
coarse mesh data obtained for the same oscillation period.

It can be seen that the oscillation of the pipe can lead to a friction decrease as high
as 40% with respect to the non-oscillating turbulent pipe, when the rotation number
approaches unity. The range of N > 1 has not been investigated, but the curves
seem to have a plateau at high N. These results are almost coincident with similar
data obtained in the plane geometry; figure 2 reports measurements obtained via
numerical simulations, for Tw

+ = 100, in channel flows at similar Reynolds number,
by Jung et al. (1992) and Baron & Quadrio (1996).

Experimental data in the cylindrical geometry are available only from Choi &
Graham (1998), but they are collected at the higher Reynolds numbers of 23 300 and
36 300 (based on pipe diameter). The reported maximum value of drag reduction is
25%. The experimental setup used by Choi & Graham (1998) allowed them to move
the pipe wall while keeping the lateral excursion fixed, so that an increase of the wall
velocity required an increase in the frequency of the oscillation. Consequently, Choi
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& Graham’s data plotted in figure 2 are measured at different values of the oscillation
period (they are labelled in the figure with the actual value of T+

w ). While low Reynolds
number effects cannot be excluded, it is possible that the difference in maximum drag
reduction between the present work and the experimental measurements by Choi &
Graham (1998) is due to their non-optimal value of the oscillation period for the
highest wall speeds.

Following the analysis already developed by Baron & Quadrio (1996) for the
plane channel flow with oscillating walls, the energetic benefit obtained through the
reduction of the friction drag has been computed and compared to the energetic cost
of sustaining the lateral motion of the wall. It has been found that, when the oscillation
velocity vθ0 is small, the global energetic budget can be favourable: if the period T+

w

lies between 100 and 150, a net power saving of up to 5–7% can be obtained. For
values of the wall velocity higher than v+

θ0 ∼ 7, the power used for the movement of
the wall is higher than the savings, and the global budget becomes negative.

4. Turbulence statistics
Detailed results are presented from the most resolved computation of the turbulent

flow in a fixed pipe, in a steadily rotating pipe, and in a pipe which oscillates around its
axis, sinusoidally in time, with a period of T+

w = 100 and with a rotation number N =
0.5, corresponding to an amplitude v+

θ0 ∼ 7.1. The oscillation period is the optimum
in terms of drag reduction, while the value of the rotation number both determines
an evident effect on wall turbulence and allows the flow to remain fully turbulent.

Some global quantities, computed for the turbulent flow in fixed, rotating and
oscillating pipes, are shown in tables 1 and 2. They are compared with results from
both numerical simulations and experiments, at equal or similar Reynolds numbers
(Recl is based on the centreline velocity, and Reτ on the friction velocity).

The ratio Ucl/Ub between the centreline velocity and the bulk mean velocity at
N = 0 assumes in the present computation a value of 1.31 for the fixed pipe flow.
This is identical (see table 2) to the results obtained by OF with a DNS at the same
Reynolds number, and by EUW; it is moreover very near to the experimental values
reported by EUW and by Reich & Beer (1989), even though their experiments were
performed at a slightly higher Reynolds number. As already noted by EUW, this
value for Ucl/Ub is significantly higher than the corresponding value in the plane
channel flow, determined as Ucl/Ub = 1.16 for example in the work by Kim et al.
(1987), possibly due to the effects of the friction over the ‘side’ walls of the pipe,
which are absent in the case of plane channel flow. In the rotating case, the centreline
mean velocity increases strongly, as shown by OF (measuring Ucl/Ub = 1.44) and by
Reich & Beer (Ucl/Ub = 1.35). This is confirmed by the present computations, where
the value of 1.42 is reached. The oscillating case, on the other hand, yields for the
ratio Ucl/Ub a value of 1.34, which is closer to that of the fixed pipe flow. As will
be shown later, in the oscillating case the axial mean velocity profile still retains a
clearly turbulent shape, with a well-defined logarithmic region, while in the presence
of steady rotation, as shown by OF, the same profile approaches the Poiseuille profile
with increasing N. The shape factor:

H =
δ∗

θ
=

∫ R

0

(
1− vz/Ucl

)
dr∫ R

0

vz/Ucl

(
1− vz/Ucl

)
dr
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Fixed Rotating Oscillating

Ucl/Ub 1.31 1.42 1.34
Ub/uτ 14.24 15.33 16.60
Ucl/uτ 18.63 21.82 22.18
cf 0.00986 0.00851 0.00726
cf/cfo 1.000 0.863 0.736
Recl 6419 6974 6566
Reτ 172 160 148
δ∗ 0.145 0.188 0.151
θ 0.089 0.109 0.085
H 1.63 1.72 1.78
|Ω′z |+ 4.65 5.16 5.02

Table 1. Comparison of global properties for mean turbulent flow in pipes: results from the
present computations.

Orlandi & Eggels et al. Eggels et al. Reich &
Present Fatica (DNS) (PIV) Beer

Ucl/Ub 1.31 1.31 1.31 1.30 1.27
Ub/uτ 14.24 14.41 14.73 14.88 14.59
Ucl/uτ 18.63 18.87 19.31 19.38 18.53
cf 0.00986 0.00963 0.00922 0.00903 0.00939
Recl 6419 6400 6950 7100 6350
Re 4900 4900 5300 5450 5000
Reτ 172 170 180 183 171
H 1.63 1.64 — — —
Hc 1.85 — 1.86 1.83 —

Table 2. Global properties for mean turbulent flow in fixed pipes: numerical simulations and
experiments.

for the mean axial velocity profile in the fixed and steady rotating cases agrees with
the results from the computations by OF and the experimental data by Murakami
& Kikuyama (1980), collected at higher Reynolds number. In the oscillating case, H
reaches the higher value of H = 1.78.

Agreement is found also with the experimental and numerical results reported
by EUW, where the displacement thickness δ∗c and the momentum thickness θc are
defined in cylindrical coordinates, and the resulting shape factor is Hc = δ∗c /θc.

The steady rotation induces a reduction in the friction coefficient cf = τw/
1
2
ρU2

b

of 13.7% when comparing with the case at N = 0: this is in partial agreement with
the result of OF, reporting approximately a 16% decrease, but is very similar to
the experimental measurements performed by Reich & Beer (1989). The alternating
oscillation of the pipe is more effective in drag reduction, leading to a 26.4% reduction
in wall friction for the case considered here.

The radial distribution of the time-averaged mean axial velocity is shown in figure
3 for the three cases considered here. The effect of the steady rotation is to change the
profile towards a more parabolic shape. In the oscillating case, however, the profile
retains all of the features of a turbulent profile. The data set computed for N = 0.5
in the pipe with steady rotation is in very good agreement with the results obtained
by OF, even though in their calculations the pipe length, the mesh size and even
the radial distribution of the non-uniformity of the grid points are different (here a
smoother stretching is applied throughout the pipe).
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Examination of figure 4, where the same quantities are plotted in the usual law-of-
the-wall form, allows the differences in the near-wall region to be seen more clearly.
The profile for the fixed pipe flow shows that a departure from the usual channel
law u+ = (1/0.41) ln y+ + 5.5 is clearly established in the log and central regions, and
confirms the high-resolution results of EUW and OF. The rotating pipe shows no
evidence of a logarithmic region, while the oscillating case does present an upward-
shifted linear region, with a slope parallel to the unmanipulated profile and which is
typical of all the drag-reducing flows, as pointed out, among others, by Choi (1989).
The amount of the upward shift, and the consequent increase in the viscous sublayer
thickness, is comparable to that observed in plane channels with wall oscillation, as
reported by Jung et al. (1992) and Baron & Quadrio (1996). This is not surprising,
since it is known, as shown for example by Luchini (1996), that the upward shift is
linearly related to the amount of drag reduction, which is comparable (see figure 2)
for the two geometries.

When the pipe oscillates, the mean azimuthal velocity is zero. However averages
taken at selected phases of the oscillation cycle are different from zero. This kind of
average is indicated by 〈·〉, while for the conventional time average the symbol (·) is
used. (In both cases, additional averaging over the homogeneous directions is applied.)
The velocity components vr and vz are found not to show phase dependence; radial
profiles of 〈vθ〉 are reported in figure 5 as a function of the phase of the oscillation.

This result agrees with the exact solution of the Stokes problem for an oscillating
flat plate; this solution predicts for the Stokes layer a thickness δ+ =

√
4πT+

w , which
is ∼ 35 in the present case. Computations and experiments, see e.g. Akhavana, Kamm
& Shapiro (1991a, b), Sarpkaya (1993), Vittori & Verzicco (1998), show that transition
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Figure 6. One-dimensional power spectral density functions, in the axial direction, for the velocity
components (a) at y+ = 5, and (b) at y+ = 20. Thin lines refer to fixed pipe flow, and thick lines
are for the oscillating pipe.

to turbulence in an oscillatory Stokes flow is observed at values of Reδ , based on the
thickness δ of the Stokes layer and the maximum transverse velocity of the wall, not
less than 500, while Reδ in the oscillating pipe flow under consideration here is 248.
The simultaneous presence of laminar velocity profiles and finite levels of turbulent
fluctuations in the accelerating phase has also been found in the simulation of Stokes
flow transition performed by Akhavan et al. (1991b). The low value of the ratio
between the thickness of the Stokes layer and the radius of the pipe implies small
curvature effects, and explains the agreement between the Stokes laminar solution for
the flat plate and the present results for a fully turbulent pipe flow.

The one-dimensional power spectral density functions for the velocity fluctuations
in the axial direction, made non-dimensional in wall units, have been computed at
different distances from the pipe wall. The spectra computed at y+ = 5 and y+ = 20 in
the oscillating pipe flow, compared with the same quantities in the reference flow, are
shown in figure 6(a, b). The first radial position has been chosen inside the transversal
boundary layer generated by the spanwise oscillations, and the second one is in
the buffer layer, where turbulent fluctuations are most significant. The spectra for
the fixed pipe are consistent with those computed and measured by EUW. For the
oscillating pipe, figure 6(a) shows near the wall a clear decrease in the energy content
for all of the velocity components at low wavenumbers, i.e. for k+

z < 0.04. (Note that,
as detailed in the following, for each computational case, the particular value of the
friction velocity has been used; therefore this non-dimensionalization de-emphasizes
the differences between the two datasets.) For k+

z > 0.04 the energy content for all
the velocity components appears to be slightly increased. When the outer position is
considered (figure 6b), the energy content for the longitudinal spectra is similar to
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that of the flow at N = 0 for the whole wavenumber range, with the exception of
the radial component, which is reduced for a significant range of wavenumbers, even
at y+ = 20. Considered together, figures 6(a) and 6(b) indicate that at the highest
longitudinal wavenumbers the energy content is low and without significant pile-up,
thus suggesting that the axial resolution used in the present computations is adequate
to resolve all the significant turbulent motions in the flow. The decay of the energy
content of the axial component at the highest wavenumbers seems however to be
marginally affected by numerical viscosity effects.

When the power spectral density functions in the azimuthal direction are consid-
ered, at the same positions (see figure 7a, b), it turns out that, at y+ = 5, the very
low-wavenumber spectrum for the streamwise component is essentially unchanged
compared with that of the non-rotating pipe, while a reduction of the energy content
is evident for higher wavenumbers. The azimuthal component is unchanged in the
high-wavenumber range, and slightly reduced for lower wavenumbers. The spectrum
for the radial velocity fluctuations is uniformly reduced over the full wavenumber
range. This behaviour is consistent with the persistence of near-wall structures with
average separation of the order of 100 wall units in the azimuthal direction. At the
outer position, the differences with the reference case become less evident; one can
however identify a slight reduction in the energy content for the lower half of the
spectrum of the radial component. The observation made before on the adequacy of
the axial resolution applies here also for the azimuthal direction.

Profiles, in the radial direction, of root-mean-square values for the velocity fluctu-
ations are shown in figure 8(a–c) and compared with analogous quantities computed
for the rotating and steady pipes. They are made non-dimensional by using for each
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case the value of the friction velocity uτ computed in the simulation. For the fixed and
steady rotating pipe flows, they agree with data from EUW and OF. When the pipe
oscillates, the r.m.s. value of the tangential component is slightly reduced throughout
the whole pipe, and shows a maximum closer to the pipe wall than the corresponding
position in the reference case. Considerably higher values for the r.m.s. of vθ are com-
puted, as already pointed out by OF, when the pipe is subject to steady rotation. A
reduction in the intensity of the fluctuations of the radial velocity component (figure
8b) is evident through the whole pipe; this reduction is not present in the rotating case.
The axial component (figure 8c), on the other hand, presents a profile shifted at higher
y for y+ < 20, while its intensity is only slightly reduced and approaches the behaviour
of the reference case in the outer part. This effect was not clearly reported in the
simulations of turbulent channel flow subject to spanwise wall oscillations performed
by Jung et al. (1992): in that study, all the values were made non-dimensional using
a reference value for uτ, corresponding to the friction in the unperturbed channel.
Baron & Quadrio (1996), on the other hand, plot their results, computed for the plane
channel at Reτ = 200, by using both reference and actual uτ for non-dimensionalizing:
when the actual uτ is used, they compute approximately the same shift in the r.m.s.
of the vz profile as has been found in the present simulation for the oscillating pipe.

Phase-dependent radial distributions of root-mean-square velocity fluctuations have
been computed, but they are not presented here, since no significant modifications in
the profiles can be observed at different phases in the oscillation cycle.
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Figure 9. Mean and phase-averaged values of the Reynolds stress components, in wall units:

(a) −v′zv′r+; (b) 〈vrv′θ〉+; (c) 〈v′θv′z〉+.

The radial profile for the −v′zv′r component of the Reynolds stresses tensor is shown
in figure 9(a). This component appears to be significantly reduced by the oscillation
of the wall in the plane geometry, as noted by Jung et al. (1992) for the channel
flow and by Laadhari et al. (1994) for the boundary layer. A similar reduction is
found even in the case of the oscillating pipe. A reduction is also evident for the
pipe in steady rotation, as observed by OF; the maximum of the profile is more or
less the same, but the thickness of the near-wall region where the reduction takes
place is lower for steady rotation. The total stress, i.e. the sum of the turbulent and
viscous stresses, shows a linear profile for the steady and oscillating cases. This is
an indication that the integration time has been chosen long enough for the flow to
reach a statistically steady state. When the pipe is subjected to the steady rotation,
however, the profile shows a slight departure from the linear behaviour. This has also
been noted by OF, who relate the phenomenon to the presence of highly elongated
structures in the central region of the pipe. Such elongated structures, observed both
in experimental and numerical visualizations, induce modifications of the Reynolds
stresses which greatly increase the time interval needed for complete convergence of
the statistics to steady state, especially in the axial region of the pipe.

The other two extra-diagonal components of the Reynolds stress tensor are identi-
cally zero in the fixed pipe flow. This has to be the case, in a time-averaged sense, even
in the oscillating pipe flow, but non-zero profiles do appear when the phase averages
are considered. The steady rotating pipe exhibits non-zero profiles even for time-mean
values. The radial profile of 〈v′rv′θ〉 (see figure 9b) shows, for steady rotation, a distri-
bution similar to that of the −v′zv′r component, but with a magnitude approximately
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one order lower. A phase dependence is found for 〈v′rv′θ〉, with symmetry in the two
halves of the cycle. The time-averaged value is close to zero, and the non-zero values
at each phase extend far from the wall. The profiles for phase angles corresponding
to the maximum wall velocity are comparable in intensity with the distribution of
the same component in the steady rotating case. Even the 〈v′θv′z〉 component, plotted
in figure 9(c), shows this phase dependence, with a similar symmetry and a zero time
average. The peak values near the wall have the same order of magnitude as those of
−v′zv′r . The maxima at a phase angle of π/2 and 3/2π occur at y/R = 0.1 and reach
values very close to those computed in the steady rotating case. At π and 2π a second
peak value of opposite sign is found at y/R = 0.06, and another zero-crossing occurs
at y/R = 0.10.

The analysis of the Reynolds stress profiles confirms the suggestion, made by
Dhanak & Si (1999), that the transport of momentum in the direction normal to
the wall is reduced, as indicated by the decrease of the v′zv′r Reynolds stress level.
Furthermore, the radial profile for 〈v′rv′θ〉 shows a negative peak at a phase angle of
π/2, i.e. in the first quarter of the oscillation cycle, when at the wall the transverse
velocity vθ = +vθ0 is maximum; this means that fluid which travels away from the
wall is predominantly associated with positive v′θ , and vice versa (remember that vr is
positive when directed towards the pipe wall). In the opposite phase of the oscillation,
at 3π/2, the situation is reversed, due to the change of sign of vθ . Since v′zv′r is positive,
the fluctuations v′z and v′r tend to have the same sign, and 〈v′θv′z〉 should hence have the
same sign as 〈v′rv′θ〉, as confirmed by figure 9(c). This analysis suggests that, when the
wall speed is maximum, ejection events are mostly associated with positive values of
the fluctuations of |vθ| around its phase-averaged mean value. Conversely, sweep-type
events are mostly associated with negative fluctuations of |vθ|.

In figure 10 the quadrant decomposition of the −v′zv′r Reynolds stress component
is reported. The sign of the radial component has been changed, in order to allow
the customary terminology which refers to ejections as events pertaining to the
second quadrant, and sweeps to the fourth. In the case of N = 0, one can note
the general agreement with the results of Kim et al. (1987) for the plane channel
flow. When considering time-averaged data for the oscillating pipe over the full cycle,
Q1- and Q4-type events, which are connected with high longitudinal velocity and
are the dominant contributors in the near-wall region, both increase significantly
their percentage contribution with respect to the reference flow. In particular the
contribution of Q1 events is more than doubled. When phase dependence is taken
into account, some effects are visible only in the near-wall region.

Further statistical moments (skewness and flatness factors) for the fluctuations of
the velocity components are shown in figure 11(a, b). Both agree well with the data
reported by EUW, concerning the statistics of steady pipe flow, confirming the different
behaviour of the flatness factor for vr in plane and cylindrical geometry, related by
EUW to an altered ‘splatting’ effect due to transverse curvature. The third moment of
the tangential velocity component, being zero for symmetry, is practically unaffected
by the oscillation, and further indicates the adequacy of the statistical sample used
for the averages. The skewness factor for the other two velocity components shows
an increase in the inner part of the pipe. The skewness of vz at the wall is almost
doubled, indicating a higher probability for large positive fluctuations of vz than for
large negative ones. The flatness factor, on the other hand, is significantly increased
for all three components in the near-wall region, indicating an overall tendency to a
more intermittent behaviour.

Two-point velocity correlations are illustrated in the following, computed both for
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Figure 10. Mean and phase-averaged quadrant analysis for the component
−v′zv′r of the Reynolds stress tensor.

the longitudinal and azimuthal directions. Both the time-averaged and phase-averaged
versions are presented. The correlation coefficient Rθθ(z) for the vθ component in the
streamwise direction, computed for the near-wall position at y+ = 5, is shown in
figure 12(a). Remember that the actual length of the pipe is L = 20R: here only the
first part of the correlation function is shown. Comparing with the case at N = 0,
the correlation decreases faster, with some dependence on the phase, while in the
steady rotating pipe the decrease is slower, going to zero in approximately 3 times
the downstream distance. A similar behaviour is observed for Rrr(z) (figure 12b). For
the streamwise component of the velocity, the coefficient Rzz(z) in figure 12(c) shows,
as already pointed out in § 2, that a pipe length of L = 20R is sufficient for the
numerical simulation of this flow using periodic boundary conditions in the axial
direction. A significant increase in the streamwise scale of the correlation, due to the
drag-reducing action of the oscillations, is evident: this is a substantial difference with
the case of steady rotation, where this coefficient does not undergo any appreciable
modification.

The axial correlations computed at y+ = 20 (not shown) make it clear that, at this
distance from the wall, all of the modifications induced in the streamwise correlation
functions by the oscillation of the pipe have disappeared, except for the increment of
the streamwise length scale, which is still evident even at y+ = 100.

Concerning the correlation functions in the azimuthal direction at y+ = 5, while
their phase dependence is not remarkable (and consequently not reported here), their
time-averaged behaviour (figure 13a–c) is significantly affected by the alternating
oscillation of the pipe wall, except for the coefficient for the radial component,
Rrr(λ

+), which is quite similar to the reference case. The well-known minimum at
a spanwise separation of approximately 50 wall units, present in the reference case
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Figure 11. (a) Skewness, and (b) flatness factors for the three velocity components: thin lines refer
to the fixed pipe, and thick lines to the oscillating pipe.

for Rθθ(λ
+) and Rzz(λ

+), is reduced by the oscillations for the azimuthal component,
and almost disappears for the longitudinal component. This is a further indication
that a strong modification of the near-wall turbulence structures takes place as a
consequence of the alternating oscillation of the pipe wall. Examining the same
quantities far from the wall (plots not shown here), one sees that the effects of the
alternating oscillation fade away as the centre of the pipe is approached. Near the
pipe centreline, the coefficients do not fall to zero, since, as put forward by Eggels
et al. (1994), in this region the velocity fluctuations are strongly correlated in the
azimuthal direction, due to small separation distances.

These relevant effects of the oscillations on the correlation functions can be ex-
plained by the convective action of the Stokes layer on the near-wall part of the
turbulent structures. The lateral shift induced by the layer can be estimated from the
Stokes solution, by integrating in time the velocity law from zero to the first half
of the period. This gives a transversal displacement of approximately 180 wall units
at y+ = 5, and 80 at y+ = 10. The turbulent structures in the lower buffer layer
hence are displaced by about 100 wall units, while above the Stokes layer they remain
relatively undisturbed; this is confirmed by the spanwise correlation coefficient of v′z
at y+ = 20 (not shown), which still presents the usual minimum point at λ+ ' 50,
while at y+ = 5 (figure 13c) the minimum has completely disappeared.
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The near-wall distortion of the streaky pattern determines the presence, at certain
phases of the cycle, of regions of high axial velocity stacked over regions of low
axial velocity near the wall, and vice versa. This implies high radial gradients of
streamwise velocity fluctuations, and hence high values of ω′θ , at y+ ' 10. Indeed,
the analysis of the phase-averaged root-mean-square ω′θ radial profiles (figure 14a)
shows a maximum which appears in the acceleration phase of the cycle (at π/4) at
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y+ = 4, grows during the rest of the cycle reaching y+ = 11 at π and fades away at
the beginning of the counter-rotating phase (the curve at 5/4π is coincident with the
one at π/4).

The tangential displacement of near-wall fluid, and the consequent stretching of
the structures, can also be visually appreciated by looking at figure 15(a, b), where
a contour plot in a cross-section field for ω′r is plotted, comparing the fixed and
the oscillating pipe. The alternating movement of the wall appears to limit the
vertical development and coherence of the structures, and to amplify their lateral
dimensions. The most evident difference between figures 15(a) and 15(b) is in the
vertical displacement of the structures in the oscillating pipe: their near-wall part is
stretched, while the outer part is less sensitive to the Stokes layer.

A clear alternating structure of low-speed and high-speed streaks is therefore
maintained only above the upper limit of the Stokes layer. This explains why the ω′r
radial profile (figure 14b) exhibits an outward shift of about 10 wall units, which is a
distance of the order of the layer thickness, and why the same profile turns out to be
almost phase-independent.

Figure 16(a–c) shows how the oscillations of the pipe modify the velocity streaks
inside the Stokes layer. In the reference case (figure 16a), there are clearly elongated
streaks of low-speed fluid with interposed high-speed, less elongated areas. The same
qualitative picture emerges (figure 16b) for the pipe in steady rotation, where one can
however observe, as reported by OF, a greater spacing between the streaks, and a
tilting of the structures. The picture is different when the pipe oscillates; the intensity
of the streaky structures is reduced, and although some high-speed spots are present,
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(a)

(b)

Figure 15. Contour plot of ωr , in a cross-section of (a) the steady pipe, and (b) the oscillating
pipe. Darker lines indicate positive values, increment is 0.2.

the evidence of elongated low-speed streaks is totally lost; this scenario is consistent
with the increase of the flatness factor in the near-wall region.

Quasi-streamwise vortical structures are less affected by wall oscillation. Speculative
arguments put forward by Kim et al. (1987) and considerations drawn from coherent
structure eduction, performed by Jeong et al. (1997) for a plane channel, indicate
that the average position of streamwise vortical structures lies between 10 and 30
wall units from the wall, i.e. mostly outside the Stokes layer created by the wall
oscillation. The time-averaged radial profile of root-mean-squared ω′z (figure 14c) has
a maximum at y+ ' 20, which is similar to the reference case and further suggests
that the average position of streamwise vortices could be unmodified. The second
maximum which appears in the various phase-averaged profiles and moves toward
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Figure 16. Instantaneous flow field of vz at y+ = 5: (a) fixed pipe; (b) steady rotating pipe;
(c) oscillating pipe. Darker lines indicate positive values, increment is 0.015.

the centre of the pipe during the acceleration phase can be interpreted as a trace of
a layer of secondary streamwise vorticity, generated by the oscillation, which moves
upwards, with a mechanism similar to that proposed above to explain phase-averaged
profiles of ω′θ .

In any case, the presence of this secondary, superimposed pattern does not allow
determination of, purely from an examination of the radial profile of the r.m.s. value
of the ωz fluctuations, whether the intensity of streamwise vortices is reduced or not
in the oscillating pipe flow. A tentative approach in this direction has been made by
Miyake, Tsujimoto & Takahashi (1997), who analysed the turbulent flow in a plane
channel of half-width h, where only one wall oscillates. They studied the evolution in
time of a quantity called total streamwise vorticity, defined as

|Ω′z|+ =
ν

huτ

∫
V
|ω′z| dV,

where uτ is the mean friction velocity. |Ω′z|+ is computed by integrating the absolute
value of streamwise vorticity fluctuations over each half V of the computational
domain, and by translating the dimensional result in plus units with the value of
the friction velocity averaged over the two sides of the channel. They found that on
the oscillating side |Ω′z| assumes values lower than on the steady side, and therefore
concluded that an effect of the oscillation of the wall is to reduce the intensity of
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quasi-streamwise vortices. In their paper, this is then related to a reduction of the
vortex stretching, leading to less conversion of spanwise vorticity into streamwise
vorticity, and thus to a partial suppression of the key process of self-sustenance for
the streamwise vortices.

It should be noted, however, that the values of |Ω′z| in the two sides would be much
closer if the non-dimensionalization were made with the friction velocities particular
to each side. The present computations, for example, yield a slightly increased value
for the total streamwise vorticity in the oscillating pipe flow (see table 1), when using
the friction velocity computed for the same flow: a value of 5.02, compared to 4.65
for the reference flow.

The persistence of quasi-streamwise vortical structures only outside of the Stokes
layer is responsible for the presence of streaky velocity patterns in the near-wall
region, which can be inferred from the autocorrelation functions for the velocity
components, shown in figures 12 and 13. The disappearance of the minimum point
for Rzz(λ

+) can be explained by reasoning that fluid with low axial velocity (hence
with predominantly negative vr , due to the sign of v′zv′r) is convected by the Stokes
layer into a region where vr > 0 and vz < 0, due to the pumping action of the outer
vortex. The low-speed fluid therefore remains near the wall, and the vz fluctuations are
thereby reduced. The opposite process leads to the same effect when fluid with high
axial velocity is considered. This effect is responsible for the appearance of additional
counter-gradient Reynolds stresses, as seen by the increased relative role of Q1 and
Q3 events in the oscillating pipe flow (figure 10). For the vr and vθ components, a
streaky pattern should persist, since it is induced mainly by the external action of the
quasi-streamwise vortices, which are relatively unaffected outside the Stokes layer.

5. Discussion
A comparison of the turbulent flow with and without an alternating movement of

the pipe wall indicates that the skin friction drag reduction induced by the oscillations
can be due to the tangential advection by the Stokes layer. The effects are more evident
on the flow structures in the viscous sublayer and in the near-wall buffer layer, while
the average position of the outer, quasi-streamwise vortical structures is less affected,
when the frequency of the oscillation (and consequently the thickness of the Stokes
layer) are set to values which lead to significant drag reduction.

A simplified description of the interaction between the movement of the wall and
the turbulence structures has been recently reported by Dhanak & Si (1999), who used
an extension of the two-dimensional flow model developed by Orlandi & Jiménez
(1994) for studying the effects of wall oscillation upon a pair of counter-rotating
streamwise vortices, and included the additional effect of vortex stretching.

The two-dimensional assumption of Orlandi & Jiménez (1994) can be considered a
good approximation for phenomena, in the (r, θ)-plane, whose characteristic time scale
is significantly smaller than the time scale associated with the longitudinal variations
of the flow. In the present case, two-dimensional computations can be thought of
as representative of the real three-dimensional events for approximately 20 viscous
time units, as estimated by Orlandi & Jiménez (1994), while the time scale of a single
oscillation of the wall is O(100) viscous time units. Moreover, O(10) such oscillations
are found to be needed before the pressure gradient adjusts to its new mean value and
the flow becomes statistically steady. This simple comparison of time scales makes it
clear that the oscillation of the wall not only has an immediate effect on the existing
flow structures, but it also affects their regeneration cycle in a significant way.
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Figure 17. Conceptual model of the coherent structure dynamics during one half of the oscillation
cycle. Phase angles of: (a) 0; (b) π/2; (c) 3π/4; (d) π.

In addition, the initial distance from the wall at which the vortex pair is placed
appears to be a crucial parameter. If the pair, as in Dhanak & Si (1999), is located at
a distance of y+ ∼ 10 from the wall, the vortices are partially embedded in the Stokes
layer, and can go through direct distortion by the movement of the wall. On the basis
of the turbulence statistics presented in § 4, see in particular figure 14(c), it is possible
to think of the quasi-streamwise vortices as staying in an outer position, typical of
the reference flow, relatively unaffected by the motion of the wall and remaining
mainly outside the Stokes layer. According to this idea, the interaction between a
single quasi-streamwise vortex and the moving wall can be qualitatively described as
follows.

At the beginning of the accelerating phase, the turbulent structures in the buffer
layer are supposed to show a pattern similar to that of the reference flow, as described,
for instance, by Jeong et al. (1997) in the analysis of plane channel flows. A single
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quasi-streamwise vortex, indicated by the arrow in figure 17(a), is assumed to have
streamwise component of vorticity of the same sign as the vorticity induced by the
movement of the wall. The vortex, with axis located at the average position of
y+ = 20, advects low-streamwise-velocity fluid outwards from the wall (Q2 event,
region of fluid enclosed by the dashed line in the figure) and high-streamwise-velocity
fluid towards the wall (Q4 event, region of fluid enclosed by the continuous line).

At a phase angle of π/2 the velocity of the wall reaches its maximum value. The
resulting Stokes layer causes a skewing of near-wall (i.e. y+ < 10) low- and high-
speed regions in the direction of the mean tangential flow, as shown in figure 17(b).
Consequently, a stacking of low- and high-speed regions takes place: high-speed fluid
near the wall happens to be located below a region of low-speed fluid in the buffer
layer, and vice versa. This stacking generates, at y+ ' 10, regions of high shear ∂v′z/∂r,
already noted in discussing figure 14(a), and indicated in figure 17(b) by the black
squares. Moreover, as reported in the context of figure 9(c), the induction by the
quasi-streamwise vortex leads to advection of high-tangential-velocity fluid from the
wall region (within the low-speed streak) and of low-tangential-velocity fluid towards
the wall region (within the high-speed streak).

During the decelerating phase (figure 17c), the skewing and stacking of streaky
structures is enhanced: the advection induced by the quasi-streamwise vortex, whose
position is less affected by the Stokes layer, contributes in moving high-speed fluid
far from the wall, thus generating counter-gradient Reynolds stresses (Q1 events,
figure 10).

Owing to the effect of these shear layers, the local radial gradients of axial velocity
in the Stokes layer are smoothed. At a phase angle of π, the intensity of axial velocity
fluctuations is therefore reduced in both low- and high-speed regions (dotted contour
lines in figure 17d for the vz component): this effect has been reported in figure 8(c).

This crude description, which neglects all the three-dimensional effects which are
present in the real flow, is nevertheless able to establish some links between the
evolution of the near-wall structures and the modifications to the turbulence statistics
illustrated in § 4.

6. Conclusions
We have studied, via direct numerical solution of the Navier–Stokes equations, the

drag-reducing turbulent flow in a pipe oscillating around its longitudinal axis, by
comparing it to the reference turbulent flow in a fixed pipe and in a pipe with steady
rotation.

Numerical experiments have quantified the maximum amount of friction drag
reduction achievable with this technique as 40%. It is possible however that this
maximum could be slightly lower at higher Reynolds numbers. When the velocity
of the oscillating wall is low, the energetic benefits of drag reduction can be 5–7%
greater than the costs of sustaining the oscillation of the pipe.

The main feature of the flow is the formation of a periodic near-wall transversal
boundary layer, with azimuthal velocity profiles almost coincident with the analytical
solution of the Stokes problem for the oscillating flat plate. A detailed analysis of
the turbulence statistics, collected both by time-averaging and averaging over phases,
has been presented, supporting the idea that the Stokes layer induces a skewing of
the near-wall portion of the elongated low- and high-speed streaks, and results in
a displacement with respect to the quasi-streamwise vortical structures in the buffer
layer. This relative lateral displacement, which is particularly evident for low-speed
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regions, is thus responsible for reducing the contribution of the ejection events to the
Reynolds stresses in the flow, and eventually the skin-friction drag.
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